Инсулин биохимия

Инсулин – самый молодой гормон

Инсулин биохимия

Инсулин представляет собой белок, состоящий из двух пептидных цепей А (21 аминокислота) и В (30 аминокислот), связанных между собой дисульфидными мостиками. Всего в зрелом инсулине человека присутствует 51 аминокислота и его молекулярная масса равна 5,7 кДа.

Синтез

Инсулин синтезируется в β-клетках поджелудочной железы в виде препроинсулина, на N-конце которого находится концевая сигнальная последовательность из 23 аминокислот, служащая проводником всей молекулы в полость эндоплазматической сети. Здесь концевая последовательность сразу отщепляется и проинсулин транспортируется в аппарат Гольджи.

На данном этапе в молекуле проинсулина присутствуют А-цепь, В-цепь и С-пептид (англ. connecting – связующий). В аппарате Гольджи проинсулин упаковывается в секреторные гранулы вместе с ферментами, необходимыми для “созревания” гормона .

По мере перемещения гранул к плазматической мембране образуются дисульфидные мостики, вырезается связующий С-пептид (31 аминокислота) и формируется готовая молекула инсулина.

В готовых гранулах инсулин находится в кристаллическом состоянии в виде гексамера, образуемого с участием двух ионов Zn2+.

Схема синтеза инсулина

Около 15% молекул проинсулина поступает в кровоток. Проинсулин обладает более слабой активностью (около 1:10), но большим периодом полувыведения (около 3:1), по сравнению с инсулином. Поэтому повышение его уровня может вызывать гипогликемические состояния, что наблюдается при инсулиномах.

Регуляция синтеза и секреции

Секреция инсулина происходит постоянно, и около 50% инсулина, высвобождаемого из β-клеток, никак не связано с приемом пищи или иными влияниями. В течение суток поджелудочная железа выделяет примерно 1/5 от запасов имеющегося в ней инсулина.

Главным стимулятором секреции инсулина является повышение концентрации глюкозы в крови выше 5,5 ммоль/л, максимума секреция достигает при 17-28 ммоль/л. Особенностью этой стимуляции является двухфазное усиление секреции инсулина:

  • первая фаза длится 5-10 минут и концентрация гормона может 10-кратно возрастать, после чего его количество понижается,
  • вторая фаза начинается примерно через 15 минут от начала гипергликемии и продолжается на протяжении всего ее периода, приводя к увеличению уровня гормона в 15-25 раз.

Чем дольше в крови сохраняется высокая концентрация глюкозы, тем большее число β-клеток подключается к секреции инсулина.

Индукция синтеза инсулина происходит от момента проникновения глюкозы в клетку до трансляции инсулиновой мРНК. Она регулируется повышением транскрипции гена инсулина, повышением стабильности инсулиновой мРНК и увеличением трансляции инсулиновой мРНК.

Активация секреции инсулина

1. После проникновения глюкозы в β-клетки (через ГлюТ-1 и ГлюТ-2) она фосфорилируется гексокиназой IV (глюкокиназа, обладает низким сродством к глюкозе),2. Далее глюкоза аэробно окисляется, при этом скорость окисления глюкозы линейно зависит от ее количества,3. В результате нарабатывается АТФ, количество которого также прямо зависит от концентрации глюкозы в крови,

4. Накопление АТФ стимулирует закрытие ионных K+-каналов, что приводит к деполяризации мембраны,

5. Деполяризация мембраны приводит к открытию потенциал-зависимых Ca2+-каналов и притоку ионов Ca2+ в клетку,
6. Поступающие ионы Ca2+ активируют фосфолипазу C и запускают кальций-фосфолипидный механизм проведения сигнала с образованием ДАГ и инозитол-трифосфата (ИФ3),
7. Появление ИФ3 в цитозоле открывает Ca2+-каналы в эндоплазматической сети, что ускоряет накопление ионов Ca2+ в цитозоле,
8. Резкое увеличение концентрации в клетке ионов Ca2+ приводит к перемещению секреторных гранул к плазматической мембране, их слиянию с ней и экзоцитозу кристаллов зрелого инсулина наружу,
9. Далее происходит распад кристаллов, отделение ионов Zn2+ и выход молекул активного инсулина в кровоток.

 Схема внутриклеточной регуляции секреции инсулина при участии глюкозы

Описанный ведущий механизм может корректироваться в ту или иную сторону под действием ряда других факторов, таких как аминокислоты, жирные кислоты, гормоны ЖКТ и другие гормоны, нервная регуляция.

Из аминокислот на секрецию гормона наиболее значительно влияют лизин и аргинин. Но сами по себе они почти не стимулируют секрецию, их эффект зависит от наличия гипергликемии, т.е. аминокислоты только потенциируют действие глюкозы.

Свободные жирные кислоты также являются факторами, стимулирующими секрецию инсулина, но тоже только в присутствии глюкозы. 

Логичной является положительная чувствительность секреции инсулина к действию гормонов желудочно-кишечного тракта – инкретинов (энтероглюкагона и глюкозозависимого инсулинотропного полипептида), холецистокинина, секретина, гастрина, желудочного ингибирующего полипептида.

Клинически важным и в какой-то мере опасным является усиление секреции инсулина при длительном воздействии соматотропного гормона, АКТГ и глюкокортикоидов, эстрогенов, прогестинов. При этом возрастает риск истощения β-клеток, уменьшение синтеза инсулина и возникновение инсулинзависимого сахарного диабета. Такое может наблюдаться при использовании указанных гормонов в терапии или при патологиях, связанных с их гиперфункцией.

Нервная регуляция β-клеток поджелудочной железы включает адренергическую и холинергическую регуляцию.

Любые стрессы (эмоциональные и/или физические нагрузки, гипоксия, переохлаждение, травмы, ожоги) повышают активность симпатической нервной системы и подавляют секрецию инсулина за счет активации α2-адренорецепторов.

С другой стороны, стимуляция β2-адренорецепторов приводит к усилению секреции.

Также выделение инсулина повышается n.vagus, в свою очередь находящегося под контролем гипоталамуса, чувствительного к концентрации глюкозы крови.

К лекарственным регуляторам секреции инсулина относятся производные сульфанилмочевины (глибенкламид, гликлазид) и глиниды (старликс, новонорм). Обе группы связываются с разными участками одного рецептора и блокируют АТФ-зависимые калиевые каналы, открывая Ca2+-каналы, и этим индуцируя секрецию инсулина.

Мишени

Рецепторы инсулина находятся практически на всех клетках организма, кроме нервных, но в разном количестве. Нервные клетки не имеют рецепторов к инсулину, т.к. последний просто не проникает через гематоэнцефалический барьер.

Наибольшая концентрация рецепторов наблюдается на мембране гепатоцитов (100-200 тыс на клетку) и адипоцитов (около 50 тыс на клетку), клетка скелетной мышцы имеет около 10 тысяч рецепторов, а эритроциты – только 40 рецепторов на клетку.

Механизм действия

После связывания инсулина с рецептором активируется ферментативный домен рецептора. Так как он обладает тирозинкиназной активностью, то фосфорилирует внутриклеточные белки – субстраты инсулинового рецептора. Дальнейшее развитие событий обусловлено двумя направлениями: MAP-киназный путь и ФИ-3-киназный механизмы действия (подробно).

При активации фосфатидилинозитол-3-киназного механизма результатом являются быстрые эффекты – активация ГлюТ-4 и поступление глюкозы в клетку, изменение активности “метаболических” ферментов – ТАГ-липазы, гликогенсинтазы, гликогенфосфорилазы, киназы гликогенфосфорилазы, ацетил-SКоА-карбоксилазы и других.

При реализации MAP-киназного механизма (англ. MAP – mitogen-activated protein) регулируются медленные эффекты – пролиферация и дифференцировка клеток, процессы апоптоза и антиапоптоза.

Скорость эффектов действия инсулина

Биологические эффекты инсулина подразделяются по скорости развития:

Очень быстрые эффекты (секунды)

Эти эффекты связаны с изменением трансмембранных транспортов:

1. Активации Na+/K+-АТФазы, что вызывает выход ионов Na+ и вход в клетку ионов K+, что ведет к гиперполяризации мембран чувствительных к инсулину клеток (кроме гепатоцитов).

2. Активация Na+/H+-обменника на цитоплазматической мембране многих клеток и выход из клетки ионов H+ в обмен на ионы Na+. Такое влияние имеет значение в патогенезе артериальной гипертензии при сахарном диабете 2 типа.

3. Угнетение мембранной Ca2+-АТФазы приводит к задержке ионов Ca2+ в цитозоле клетки.

4. Выход на мембрану миоцитов и адипоцитов переносчиков глюкозы ГлюТ-4 и увеличение в 20-50 раз объема транспорта глюкозы в клетку.

Быстрые эффекты (минуты)

Быстрые эффекты заключаются в изменении скоростей фосфорилирования и дефосфорилирования метаболических ферментов и регуляторных белков.

Печень

  • торможение эффектов адреналина и глюкагона (фосфодиэстераза),
  • ускорение гликогеногенеза (гликогенсинтаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиление синтеза жирных кислот (ацетил-SКоА-карбоксилаза),
  • формирование ЛПОНП,
  • повышение синтеза холестерина (ГМГ-SКоА-редуктаза),

Мышцы

  • торможение эффектов адреналина (фосфодиэстераза),
  • стимулирует транспорт глюкозы в клетки (активация ГлюТ-4),
  • стимуляция гликогеногенеза (гликогенсинтаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиливает транспорт нейтральных аминокислот в мышцы,
  • стимулирует трансляцию (рибосомальный синтез белков).

Жировая ткань

  • стимулирует транспорт глюкозы в клетки (активация Глют-4),
  • активирует запасание жирных кислот в тканях (липопротеинлипаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • усиление синтеза жирных кислот (активация ацетил-SКоА-карбоксилазы),
  • создание возможности для запасания ТАГ (инактивация гормон-чувствительной-липазы).

Медленные эффекты (минуты-часы)

Медленные эффекты заключаются в изменении скорости транскрипции генов белков, отвечающих за обмен веществ, за рост и деление клеток, например:

1. Индукция синтеза ферментов в печени

  • глюкокиназы и пируваткиназы (гликолиз),
  • АТФ-цитрат-лиазы, ацетил-SКоА-карбоксилазы, синтазы жирных кислот, цитозольной малатдегидрогеназы (синтез жирных кислот),
  • глюкозо-6-фосфатдегидрогеназы (пентозофосфатный путь),

2. Индукция в адипоцитах синтеза глицеральдегидфосфат-дегидрогеназы и синтазы жирных кислот.

3. Репрессия синтеза мРНК, например, для ФЕП-карбоксикиназы (глюконеогенез).

4. Обеспечивает процессы трансляции, повышая фосфорилирование по серину рибосомального белка S6.

Очень медленные эффекты (часы-сутки)

Очень медленные эффекты реализуют митогенез и размножение клеток. Например, к этим эффектам относится

1. Повышение в печени синтеза соматомедина, зависимого от гормона роста.

2. Увеличение роста и пролиферации клеток в синергизме с соматомединами.

3. Переход клетки из G1-фазы в S-фазу клеточного цикла.

Инактивация инсулина

Удаление инсулина из циркуляции происходит после его связывания с рецептором и последующей интернализации (эндоцитоза) гормон-рецепторного комплекса, в основном в печени и мышцах.

После поглощения комплекс разрушается и белковые молекулы лизируются до свободных аминокислот. В печени захватывается и разрушается до 50% инсулина при первом прохождении крови, оттекающей от поджелудочной железы.

В почках инсулин фильтруется в первичную мочу и, после реабсорбции в проксимальных канальцах, разрушается.

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.

Найти

Появился вопрос? Спрашиваем в группе

Общая биохимия

Источник: https://biokhimija.ru/gormony/insulin.html

Инсулин

Инсулин биохимия

Инсулин, получивший свое название от наименования панкреатических островков (лат. insula – островок), был первым белком, первичная структура которого была раскрыта в 1954 г. Ф. Сэнджером (см. главу 1). В чистом виде инсулин был получен в 1922 г.

после его обнаружения в экстрактах панкреатических островков Ф. Бантингом и Ч. Бестом. Молекула инсулина, содержащая 51 аминокислотный остаток, состоит из двух полипептидных цепей, соединенных между собой в двух точках дисульфидными мостиками.

Строение инсулина и его предшественника проинсулина приведено в главе 1 (см. рис. 1.14). В настоящее время принято обозначать цепью А инсулина 21-членный пептид и цепью В – пептид, содержащий 30 остатков аминокислот. Во многих лабораториях осуществлен, кроме того, химический синтез инсулина.

Наиболее близким по своей структуре к инсулину человека является инсулин свиньи, у которого в цепи В вместо треонина в положении 30 содержится аланин.

Существенных различий в аминокислотной последовательности в инсулине от разных животных нет. Инсулины различаются аминокислотным составом цепи А в положениях 8–10.

Согласно современным представлениям, биосинтез инсулина осуществляется в β-клетках панкреатических островков из своего предшественника проинсулина, впервые выделенного Д. Стайнером в 1966 г. В настоящее время не только выяснена первичная структура проинсулина, но и осуществлен его химический синтез (см. рис. 1.14).

Проинсулин представлен одной полипептидной цепью, содержащей 84 аминокислотных остатка; он лишен биологической, т.е. гормональной, активности.

Местом синтеза проинсули-на считается фракция микросом β-клеток панкреатических островков; превращение неактивного проинсулина в активный инсулин (наиболее существенная часть синтеза) происходит при перемещении проинсулина от рибосом к секреторным гранулам путем частичного протеолиза (отщепление с С-конца полипептидной цепи пептида, содержащего 33 аминокислотных остатка и получившего наименование соединяющего пептида, или С-пепти-да). Длина и первичная структура С-пептида подвержена большим изменениям у разных видов животных, чем последовательность цепей А и В инсулина. Установлено, что исходным предшественником инсулина является препроинсулин, содержащий, помимо проинсулина, его так называемую лидерную, или сигнальную, последовательность на N-конце, состоящую из 23 остатков аминокислот; при образовании молекулы проинсулина этот сигнальный пептид отщепляется специальной пептидазой. Далее молекула проинсулина также подвергается частичному протеолизу, и под действием трипсиноподобной протеиназы отщепляются по две основные аминокислоты с N- и С-конца пептида С – соответственно дипептиды Aрг–Aрг и Лиз– –Aрг (см. рис. 1.14). Однако природа ферментов и тонкие механизмы этого важного биологического процесса – образование активной молекулы инсулина окончательно не выяснены.

Синтезированный из проинсулина инсулин может существовать в нескольких формах, различающихся по биологическим, иммунологическим и физико-химическим свойствам.

Различают две формы инсулина: 1) свободную, вступающую во взаимодействие с антителами, полученными к кристаллическому инсулину, и стимулирующую усвоение глюкозы мышечной и жировой тканями; 2) связанную, не реагирующую с антителами и активную только в отношении жировой ткани.

В настоящее время доказано существование связанной формы инсулина и установлена локализация ее в белковых фракциях сыворотки крови, в частности в области трансферринов и α-глобулинов. Молекулярная масса связанного инсулина от 60000 до 100000.

Различают, кроме того, так называемую форму А инсулина, отличающуюся от двух предыдущих рядом физико-химических и биологических свойств, занимающую промежуточное положение и появляющуюся в ответ на быструю, срочную потребность организма в инсулине.

В физиологической регуляции синтеза инсулина доминирующую роль играет концентрация глюкозы в крови. Так, повышение содержания глюкозы в крови вызывает увеличение секреции инсулина в панкреатических островках, а снижение ее содержания, наоборот,– замедление секреции инсулина.

Этот феномен контроля по типу обратной связи рассматривается как один из важнейших механизмов регуляции содержания глюкозы в крови. На секрецию инсулина оказывают влияние, кроме того, электролиты (особенно ионы кальция), аминокислоты, глюкагон и секретин. Приводятся доказательства роли циклазной системы в секреции инсулина.

Предполагают, что глюкоза действует в качестве сигнала для активирования аденилат-циклазы, а образовавшийся в этой системе цАМФ – в качестве сигнала для секреции инсулина.

При недостаточной секреции (точнее, недостаточном синтезе) инсулина развивается специфическое заболевание – сахарный диабет (см. главу 10). Помимо клинически выявляемых симптомов (полиурия, полидипсия и полифагия), сахарный диабет характеризуется рядом специфических нарушений процессов обмена.

Так, у больных развиваются гипергликемия (увеличение уровня глюкозы в крови) и гликозурия (выделение глюкозы с мочой, в которой в норме она отсутствует).

К расстройствам обмена относят также усиленный распад гликогена в печени и мышцах, замедление биосинтеза белков и жиров, снижение скорости окисления глюкозы в тканях, развитие отрицательного азотистого баланса, увеличение содержания холестерина и других липидов в крови.

При диабете усиливаются мобилизация жиров из депо, синтез углеводов из аминокислот (глюконеогенез) и избыточный синтез кетоновых тел (кетонурия). После введения больным инсулина все перечисленные нарушения, как правило, исчезают, однако действие гормона ограничено во времени, поэтому необходимо вводить его постоянно.

Клинические симптомы и метаболические нарушения при сахарном диабете могут быть объяснены не только отсутствием синтеза инсулина.

Получены доказательства, что при второй форме сахарного диабета, так называемой инсулинрезистентной, имеют место и молекулярные дефекты: в частности, нарушение структуры инсулина или нарушение ферментативного превращения проинсулина в инсулин. В основе развития этой формы диабета часто лежит потеря рецепторами клеток-мишеней способности соединяться с молекулой инсулина, синтез которого нарушен, или синтез мутантного рецептора (см. далее).

У экспериментальных животных введение инсулина вызывает гипогликемию (снижение уровня глюкозы в крови), увеличение запасов гликогена в мышцах, усиление анаболических процессов, повышение скорости утилизации глюкозы в тканях. Кроме того, инсулин оказывает опосредованное влияние на водный и минеральный обмен.

Механизм действия инсулина окончательно не расшифрован, несмотря на огромное количество фактических данных, свидетельствующих о существовании тесной и прямой зависимости между инсулином и процессами обмена веществ в организме.

В соответствии с «унитарной» теорией все эффекты инсулина вызваны его влиянием на обмен глюкозы через фермент гексокиназу. Новые экспериментальные данные свидетельствуют, что усиление и стимуляция инсулином таких процессов, как транспорт ионов и аминокислот, трансляция и синтез белка, экспрессия генов и др.

, являются независимыми. Это послужило основанием для предположения о множественных механизмах действия инсулина.

Рис. 8.1. Инсулиновый рецептор (схема). Две α-цепи на наружной поверхности мембраны клетки и две трансмембранные β-цепи. Связывание инсулина с α-цепями запускает аутофосфорилирование остатков тирозина в β-цепях; активный тирозинкиназный домен затем участвует в фосфорилировании неактивных белков-мишеней в цитозоле.

Наиболее вероятной в настоящее время представляется мембранная локализация первичного действия почти всех белковых гормонов, включая инсулин.

Получены доказательства существования специфического рецептора инсулина на внешней плазматической мембране почти всех клеток организма, а также образования инсулинрецепторного комплекса. Рецептор синтезируется в виде предшественника – полипептида (1382 аминокислотных остатка, мол.

масса 190000), который далее расщепляется на α-и β-субъединицы, т.е. на гетеродимер (в формуле α2–β2), связанные дисульфидными связями. Оказалось, что если α-субъединицы (мол. масса 135000) почти целиком располагаются на внешней стороне биомембраны, выполняя функцию связывания инсулина клетки, то β-субъединицы (мол.

масса 95000) представляют собой трансмембранный белок, выполняющий функцию преобразования сигнала (рис. 8.1). Концентрация рецепторов инсулина на поверхности достигает 20000 на клетку, и период их полужизни составляет 7–12 ч.

Самым интересным свойством рецептора инсулина, отличным от всех других рецепторов гормонов белковой и пептидной природы, является его способность аутофосфорилирования, т.е. когда рецептор наделен сам протеинкиназной (тирозинкиназной) активностью.

При связывании инсулина с α-цепями рецептора происходит активирование тирозинкиназной активности β-цепей путем фосфорилирования их тирозиновых остатков. В свою очередь активная тирозинкиназа β-цепей запускает каскад фосфо-рилирования–дефосфорилирования протеинкиназ, в частности мембранных или цитозольных серин- или треонинкиназ, т.е.

протеинкиназ и белков-мишеней, фосфорилирование в которых осуществляется за счет ОН-групп серина и треонина. Соответственно имеют место изменения клеточной активности, в частности активация и ингибирование ферментов, транспорт глюкозы, синтез полимерных молекул нуклеиновых кислот и белков и т.д .

Следует подчеркнуть, однако, что тонкие молекулярные механизмы путей передачи сигнала от инсулинрецепторного комплекса на множество внутриклеточных процессов пока не раскрыты. Вполне возможно участие в подобных процессах ряда внутриклеточных вторичных мессенджеров, в частности циклических нуклеотидов, производных фосфатидилинозитолов и др.

Нельзя исключить, кроме того, возможности существования внутриклеточного посредника или медиатора действия инсулина (особого внутриклеточного рецептора), контролирующего транскрипцию генов и соответственно синтез мРНК.

Предполагают, что действием инсулина и участием в регуляции экспрессии генов или в транскрипции специфических мРНК может быть объяснена его роль в таких фундаментальных процессах жизнедеятельности, как эмбриогенез и дифференцировка клеток высших организмов.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ

Еще по теме:

Источник: http://www.xumuk.ru/biologhim/121.html

Инсулин. Физиологические эффекты инсулина. Схема транспорта глюкозы через клеточные мембраны. Основные эффекты инсулина

Инсулин биохимия

Оглавление темы “Гормон околощитовидных желез. Гормоны эпифиза. Гормоны поджелудочной железы. Гормоны половых желез. Гормоны тимуса.”:
1. Околощитовидные железы. Паратирин. Паратгормон. Кальцитриол. Регуляторные функции гормона околощитовидных желез.
2. Эпифиз. Мелатонин. Гормоны эпифиза.

Регуляторные функции гормонов эпифиза.
3. Гормоны поджелудочной железы. Островки Лангерганса. Соматостатин. Амилин. Регуляторные функции гормонов поджелудочной железы.
4. Инсулин. Физиологические эффекты инсулина. Схема транспорта глюкозы через клеточные мембраны. Основные эффекты инсулина.
5. Глюкагон.

Физиологические эффекты глюкагона. Основные эффекты глюкагона.
6. Половые железы. Гормоны половых желез. Регуляторные функции гормонов половых желез.
7. Андрогены. Ингибин. Эстрогены. Тестостерон. Лютропин. Фоллитропин. Гормоны семенников и их эффекты в организме.
8. Женские половые гормоны.

Гормоны яичников и их эффекты в организме. Эстрогены. Эстрадиол. Эстрон. Эстриол. Прогестерон.
9. Гормоны плаценты. Эстриол. Прогестерон. Хорионический гонадотропин.
10. Гормоны тимуса. Тимозин. Тимопоэтин. Тимулин. Регуляторные функции гормонов тимуса.

Действие инсулина на клетки-мишени начинается после его связывания со специфическими димерными мембранными рецепторами (рис. 6.22), при этом внутриклеточный домен рецептора обладает тирозинкиназной активностью.

Инсулин-рецепторный комплекс не только передает сигнал внутрь клетки, но и частично путем эндоцитоза поступит внутрь клетки к лизо-сомам. Под влиянием лизосомальной протеазы инсулин отщепляется от рецептора, при этом последний либо разрушается, либо возвращается к мембране и вновь встраивается в нее.

Многократное перемещение рецептора от мембраны к лизосомам и обратно к мембране носит название рециклизация рецептора. Процесс рециклизации важен для регуляции колич-ства инсулиновых рецепторов, в частности обеспечения обратной зависимости между концентрацией инсулина и количеством мембранных рецепторов к нему.

Образование инсулин-рецепторного комплекса активирует тирозинкиназу, запускающую процессы фосфорилирования внутриклеточных белков. Происходящее при этом аутофосфорилирование рецептора ведет к усилению первичного сигнала.

Инсулин-рецепторный комплекс вызывает активирование фосфолипазы С, образование вторичных посредников инозитолтрифосфата и диацилглицерола, активацию протеинкиназы С, ингибирование цАМФ.

Участие нескольких систем вторичных посредников объясняет многообразие и различия эффектов инсулина в разных тканях.

Рис. 6.22. Схема механизма действия инсулина на клетку-мишень.

Инсулин оказывает влияние на все виды обмена веществ, способствует анаболическим процессам, увеличивая синтез гликогена, жиров и белков, тормозя эффекты многочисленных контринсулярных гормонов (глюкагона, катехоламинов, глюкокортикоидов и соматотропина).

Все эффекты инсулина по скорости их реализации подразделяют на 4 группы: очень быстрые (через несколько секунд) — гиперполяризация мембран клеток (за исключением гепатоцитов), повышение проницаемости для глюкозы, активация Na-K-АТФазы, входа К+ и откачивания Na , подавление Са-насоса и задержка Са2+; быстрые эффекты (в течение нес кольких минут) — активация и торможение различных ферментов, подавляющих катаболизм и усиливающих анаболические процессы; медленные процессы (в течение нескольких часов) — повышенное поглощение амиминокислот, изменение синтеза РНК и белков-ферментов; очень медленные эффекты (от часов до суток) — активация митогенеза и размножения клеток.

Важнейшим эффектом инсулина в организме является увеличение в 20—50 раз транспорта глюкозы через мембраны мышечных и жировых клеток путем облегченной диффузии по градиенту концентрации с помощью чувствительных к гормон) мембранных белковых переносчиков, называемых ГЛЮТ. В мембранах разных видов клеток выявлены 6 типов ГЛЮТ (рис. 6.23), но только один из них — ГЛЮТ-4 — является инсулинозависимым и находится в мембранах клеток скелетных мышц, миокарда, жировой ткани.

Инсулин влияет на угле водный обмен, что проявляется:

1) активацией утилизации глюкозы клетками, 2) усилением процессов фосфорилирования; 3) подавлением распад; и стимуляцией синтеза гликогена; 4) угнетением глюконеогенеза; 5) активацией процессов гликолиза;

6) гипогликемией.

Действие инсулина на белковый обмен состоит в: 1) повышении проницаемости мембран для аминоокислот; 2) усилении синтеза иРНК; 3) активации в печени синтеза aминокислот; 4) повышении синтеза и подавлении распада белка.

Рис. 6.23. Схема транспорта глюкозы через клеточные мембраны. Переносчики имеют общее название ГЛЮТ-1, 2, 3, 4, 5, 6. Только ГЛЮТ-4 является инсулинозависимым.

Основные эффекты инсулина на липидный обмен:

• стимуляция синтеза свободных жирных кислот из глюкозы; • стимуляция синтеза липопротеиновой липазы в клетках эндотелия сосудов и благодаря этому активация гидролиза связанных с липо-протеинами крови триглицеридов и поступления жирных кислот в клетки жировой ткани; • стимуляция синтеза триглицеридов; • подавление распада жира;

• активация окисления кетоновых тел в печени.

Благодаря влиянию на клеточную мембрану инсулин поддерживает высокую внутриклеточную концентрацию ионов калия, что необходимо для обеспечения нормальной в возбудимости клеток.

Широкий спектр метаболических эффектов инсулина в организме свидетельствует о том, что гормон необходим для осуществления функционирования всех тканей, оргаганов и физиологических систем, реализации эмоциональных и поведенческих актов, поддержания гомеостазиса, осуществления механизмов приспособления и защиты организма от неблагоприятных факторов среды.

Недостаток инсулина (относительный дефицит по сравнению с уровнем контринсулярных гормонов, прежде всего глюкагона) приводит к сахарному диабету. Избыток инсулина в крови, например при передозировке, вызывает гипогликемию с резкими нарушениями функций центральной нервной системы, использующей глюкозу как основной источник энергии независимо от инсулина.

– Также рекомендуем “Глюкагон. Физиологические эффекты глюкагона. Основные эффекты глюкагона.”

Источник: https://meduniver.com/Medical/Physiology/88.html

Механизм действия инсулина: биохимия и биосинтез гормона – ПротивДиабета

Инсулин биохимия

Основное действие инсулина на мышечные и жировые клетки заключается в усилении транспорта глюкозы через мембрану клетки. Стимуляция инсулином приводит к увеличению скорости поступления глюкозы внутрь клетки в 20-40 раз.

При стимуляции инсулином наблюдается увеличение в 5-10 раз содержания транспортных белков глюкозы в плазматических мембранах при одновременном уменьшении на 50-60 % их содержания во внутриклеточном пуле.

Требующееся при этом количество энергии в виде АТР необходимо в основном для активации инсулинового рецептора, а не для фосфорилирования белка-транспортера. Стимуляция транспорта глюкозы увеличивает потребление энергии в 20-30 раз, тогда как для перемещения транспортеров глюкозы требуется лишь незначительное ее количество.

Транслокация транспортеров глюкозы к мембране клетки наблюдается уже через несколько минут после взаимодействия инсулина с рецептором, и для ускорения или поддержания процесса циклирования белков-транспортеров необходимо дальнейшее стимулирующее влияние инсулина.

Своё действие на клетки инсулин, как и другие гормоны, осуществляет через соответствующий белок-рецептор. Инсулиновый рецептор представляет собой сложный интегральный белок клеточной мембраны, состоящий из двух альфа-субъединиц (130 kDа) и двух бетта-субъединиц (95 кДа); первые расположены целиком вне клетки, на ее поверхности, вторые пронизывают плазматическую мембрану.

Рецептор к инсулину представляет собой тетрамер, состоящий из двух внеклеточных альфа-субъединиц, взаимодействующих с гормоном и связанных друг с другом дисульфидными мостиками между цистеинами 524 и триплетом Cys682, Cys683, Cys685 обеих альфа-субъединиц (см. рис. 5.

19, а), и двух трансмембранных бетта-субъединиц, проявляющих тирозинкиназную активность, связанных дисульфидным мостиком между Cys647 (альфа) и Cys872.

Полипептидная цепь альфа-субъединицы молекулярной массой 135 kDa содержит 719 аминокислотных остатков и состоит из шести доменов: двух содержащих лейциновые повторы доменов L1 и L2, цистеин-богатой области СR, где локализуется центр связывания инсулина, и трех фибронектиновых доменов типа III Fno, Fn1, Ins (домена внедрения)

Бетта-субъединица включает 620 аминокислотных остатков, имеет молекулярную массу 95 kDa и состоит из семи доменов: трех фибронектиновых доменов ID, Fn1 и Fn2, трансмембранного домена ТМ, примыкающего к мембране домена JM, тирозинкиназного домена ТК, С-концевого СТ. На рецепторе обнаружено два места связывания инсулина: одно с высоким сродством, другое с низким. Для проведения сигнала гормона в клетку необходимо связывание инсулина с центром высокого сродства.

Этот центр формируется при связывании инсулина из L1, L2 и CR доменов одной альфа-субъединицы и фибронектиновых доменов другой, при этом расположение альфа-субъединиц противоположно относительно друг друга, как это показано на рис. 5.19, с.

Рис. 5.19. Структура димера инсулинового рецептора: а — модульная структура инсулинового рецептора.

Вверху — альфа-субъединицы, связанные дисульфидными мостиками Cys524, Cys683 685 и состоящие из шести доменов: двух содержащих лейциновые повторы L1 и L2, цистеин-богатой области СR и трех фибронектиновых доменов типа III Fno, Fn1, ID (домена внедрения).

Внизу — бетта-субъединицы, связанные с альфа-субъединицей дисульфидным мостиком Cys647 Cys872 и состоящие из семи доменов: трех фибронектиновых доменов ID, Fn1 и Fn2, трансмембранного домена ТМ, примыкающего к мембране домена JM, тирозинкиназного домена ТК, С-концевого СТ; б — пространственное расположение рецептора, один димер изображен в цвете, другой белый, А — активирующая петля, противоположная месту связывания гормона, Х (красный) С-концевая часть альфа-субъединицы, Х (черный) N-концевая часть бетта-субъединицы, желтые шарики 1,2,3 — дисульфидные связи между остатками цистеина в положениях 524, 683 685, 647 872.

В отсутствие взаимодействия инсулина с центром высокого сродства рецептора альфа-субъединицы отодвинуты от бетта-субъединиц выступом (cam), являющимся частью CR домена, что препятствует контакту активирующей петли (А-loop) тирозинкиназного домена одной бетта-субъединицы с сайтами фосфорилирования на другой бетта-субъединице (рис. 5.20, б).

При связывания инсулина с центром высокого сродства инсулинового рецептора изменяется конформация рецептора, выступ более не препятствует сближению альфа- и бетта-субъединиц, активирующие петли ТК доменов взаимодействуют с сайтами фосфорилирования тирозинов на противоположном ТК домене, происходит трансфосфорилирование бетта-субъединиц по семи остаткам тирозина: Y1158, Y1162, Y1163 активирующей петли (это киназный регуляторный домен), Y1328, Y1334 СТ домена, Y965, Y972 JM домена (рис. 5.20, а), что приводит к повышению тирозинкиназной активности рецептора. В позиции 1030 ТК находится остаток лизина, входящий в каталитический активный центр — АТРсвязывающий центр. Замена этого лизина на многие другие аминокислоты путем сайтнаправленного мутагенеза уничтожает тирозинкиназную активность инсулинового рецептора, но не нарушает связывания инсулина. Однако присоединение инсулина к такому рецептору никакого действия на клеточный метаболизм и пролиферацию не оказывает. Фосфорилирование некоторых остатков серина-треонина, наоборот, снижает сродство к инсулину и уменьшает тирозинкиназную активность.

Известно несколько субстратов инсулинового рецептора: ИРС-1 (субстрат инсулинового рецептора), ИРС-2, белки семейства STAT (signal transducer and activator of transcription — переносчики сигнала и активаторы транскрипции подробно рассмотрены нами в Части 4 «Биохимические основы защитных реакций»).

ИРС-1 представляет собой цитоплазматический белок, связывающийся с фосфорилированными тирозинами ТК инсулинового рецептора своим SH2-доменом и фосфорилируемый тирозинкиназой рецептора немедленно после стимуляции инсулином.

От степени фосфорилирования субстрата зависит увеличение или уменьшение клеточного ответа на инсулин, амплитуда изменений в клетках и чувствительность к гормону. Повреждения гена ИРС-1 могут быть причиной инсулинзависимого диабета.

Пептидная цепь ИРС-1 содержит около 1200 аминокислотных остатков, 20 22 потенциальных центров фосфорилирирования по тирозину и около 40 центров фосфорилирования по серину-треонину.

Рис. 5.20.

Упрощенная схема структурных изменений при связывании инсулина с инсулиновым рецептором: а — изменение конформации рецептора в результате связывания гормона в центре высокого сродства приводит к смещению выступа, сближению субъединиц и трансфосфорилированию ТК доменов; б — в отсутствие взаимодействия инсулина с центром связывания высокого сродства на инсулиновом рецепторе выступ (саm) препятствует сближению альфа- и бетта-субъединиц и трансфосфорилированию ТК доменов. A-петля активирующая петля ТК домена, цифры 1 и 2 в кружочке дисульфидные связи между субъединицами, ТК — тирозинкиназный домен, С — каталитический центр ТК, set 1 и set 2 аминокислотные последовательности альфа-субъединиц, формирующие место высокого сродства инсулина к рецептору.

Фосфорилирование ИРС-1 по нескольким тирозиновым остаткам придает ему способность соединяться с белками, содержащими SH2-домены: тирозинфосфатазой syp, p85-субъединицей ФИ-3-киназы (фосфатидилинозитол-3-киназы), адапторным белком Grb2, протеинтирозинфосфатазой SH-PTP2, фосфолипазой С, GAP (активатором малых GTP-связывающих белков). В результате взаимодействия ИРС-1 с подобными белками генерируются множественные нисходящие сигналы.

Рис. 5.21. Транслокация белков-переносчиков глюкозы ГЛЮТ 4 в мышечных и жировых клетках из цитоплазмы в плазматическую мембрану под действием инсулина.

Взаимодействие инсулина с рецептором приводит к фосфорилированию субстрата инсулинового рецептора (ИРС), связывающего ФИ-3-киназу (ФИ3К), катализирующую синтез фосфолипида фосфатидилинозитол-3,4,5-трифосфата (PtdIns(3,4,5)P3). Последнее соединение, связывая плекстриновые домены (РН), мобилизует к клеточной мембране протеинкиназы PDK1, PDK2 и РКВ.

PDK1 фосфорилирует РКВ по Thr308, активируя ее. Фосфорилированная РКВ ассоциирует с везикулами, содержащими ГЛЮТ 4, вызывая их транслокацию в плазматическую мембрану, приводящую к усилению транспорта глюкозы внутрь мышечных и жировых клеток.

Стимулируемая фосфорилированным ИРС-1 фосфолипаза С гидролизует фосфолипид клеточной мембраны фосфатидилинозитол-4,5-дифосфат с образованием двух вторичных мессенджеров: инозитол-3,4,5-трифосфата и диацилглицерина.

Инозитол-3,4,5-трифосфат, действуя на ионные каналы эндоплазматического ретикулума, высвобождает из него кальций.

Диацилглицерин действует на кальмодулин и протеинкиназу С, которая фосфорилирует различные субстраты, приводя к изменению активности клеточных систем.

Фосфорилированный ИРС-1 активирует также ФИ-3-киназу, катализирующую фосфорилирование фосфатидилинозитола, фосфати-дилинозитол-4-фосфата и фосфатидилинозитол-4,5-дифосфата по положению 3 с образованием соответственно фосфатидилинозитол-3-фосфата, фосфатидилинозитол-3,4-дифосфата и фосфатидилинози-тол-3,4,5-трифосфата.

ФИ-3-киназа представляет собой гетеродимер, содержащий регуляторную (р85) и каталитическую (р110) субъединицы. В регуляторной субъединице есть два SH2-домена и SH3-домен, поэтому ФИ-3-киназа с высоким сродством присоединяется к ИРС-1.

Образовавшиеся в мембране производные фосфатидилинозитола, фосфорилированные по положению 3, связывают белки, содержащие так называемый плекстриновый (РН) домен (домен проявляет высокое сродство к фосфатидилинозитол-3-фосфатам): протеинкиназу PDK1 (фосфатидилинозитид-зависимую киназу), протеинкиназу В (РКВ).

Протеинкиназа В (РКВ) состоит из трех доменов: N-концевого плекстринового, центрального каталитического и С-концевого регуляторного. Плекстриновый домен необходим для активации РКВ.

Связавшись с помощью плекстринового домена вблизи клеточной мембраны, РКВ сближается с протеинкиназой PDK1, которая через свой плекстриновый домен также локализуется вблизи клеточной мембраны. PDK1 фосфорилирует Thr308 киназного домена РКВ, что приводит к активации РКВ.

Активированная РКВ фосфорилирует киназу 3 гликогенсинтазы (по положению Ser9), вызывая инактивацию фермента и тем самым процесс синтеза гликогена.

Фосфорилированию подвергается также ФИ-3-фосфат-5-киназа, действующая на везикулы, в которых белки-переносчики ГЛЮТ 4 хранятся в цитоплазме адипоцитов, вызывая перемещение транспортеров глюкозы к клеточной мембране, встраивание в нее и трансмембранный перенос глюкозы в мышечные и жировые клетки (рис. 5.21).

Инсулин не только влияет на поступление глюкозы в клетку с помощью белков-переносчиков ГЛЮТ 4. Он участвует в регуляции метаболизма глюкозы, жиров, аминокислот, ионов, в синтезе белков, оказывает влияние на процессы репликации и транскрипции.

Влияние на метаболизм глюкозы в клетке осуществляется путем стимулирования процесса гликолиза с помощью повышения активности ферментов, участвующих в этом процессе: глюкокиназы, фосфофруктокиназы, пируваткиназы, гексокиназы.

Инсулин посредством аденилатциклазного каскада активирует фосфатазу, дефосфорилирующую гликогенсинтазу, что приводит к активации синтеза гликогена (рис. 5.22) и ингибированию процесса его распада.

Ингибируя фосфоенолпируваткарбоксикиназу, инсулин тормозит процесс глюконеогенеза.

Рис. 5.22. Схема синтеза гликогена.

В печени и жировой ткани под действием инсулина стимулируется синтез жиров путем активации ферментов: ацетилСоА-карбоксилазы, липопротеинлипазы. При этом распад жиров тормозится, так как активируемая инсулином фосфатаза, дефосфорилируя гормончувствительную триацилглицеринлипазу, ингибирует этот фермент и концентрация циркулирующих в крови жирных кислот уменьшается.

В печени, жировой ткани, скелетных мышцах, сердце инсулин влияет на скорость транскрипци более сотни генов.

Источник: https://rusdatas.ru/lechenie/mehanizm-dejstviya-insulina-biohimiya-i-biosintez-gormona.html

РецептЛечения
Добавить комментарий