Влияние инсулина на обмен веществ

Инсулин – самый молодой гормон

Влияние инсулина на обмен веществ

Инсулин представляет собой белок, состоящий из двух пептидных цепей А (21 аминокислота) и В (30 аминокислот), связанных между собой дисульфидными мостиками. Всего в зрелом инсулине человека присутствует 51 аминокислота и его молекулярная масса равна 5,7 кДа.

Синтез

Инсулин синтезируется в β-клетках поджелудочной железы в виде препроинсулина, на N-конце которого находится концевая сигнальная последовательность из 23 аминокислот, служащая проводником всей молекулы в полость эндоплазматической сети. Здесь концевая последовательность сразу отщепляется и проинсулин транспортируется в аппарат Гольджи.

На данном этапе в молекуле проинсулина присутствуют А-цепь, В-цепь и С-пептид (англ. connecting – связующий). В аппарате Гольджи проинсулин упаковывается в секреторные гранулы вместе с ферментами, необходимыми для “созревания” гормона .

По мере перемещения гранул к плазматической мембране образуются дисульфидные мостики, вырезается связующий С-пептид (31 аминокислота) и формируется готовая молекула инсулина.

В готовых гранулах инсулин находится в кристаллическом состоянии в виде гексамера, образуемого с участием двух ионов Zn2+.

Схема синтеза инсулина

Около 15% молекул проинсулина поступает в кровоток. Проинсулин обладает более слабой активностью (около 1:10), но большим периодом полувыведения (около 3:1), по сравнению с инсулином. Поэтому повышение его уровня может вызывать гипогликемические состояния, что наблюдается при инсулиномах.

Регуляция синтеза и секреции

Секреция инсулина происходит постоянно, и около 50% инсулина, высвобождаемого из β-клеток, никак не связано с приемом пищи или иными влияниями. В течение суток поджелудочная железа выделяет примерно 1/5 от запасов имеющегося в ней инсулина.

Главным стимулятором секреции инсулина является повышение концентрации глюкозы в крови выше 5,5 ммоль/л, максимума секреция достигает при 17-28 ммоль/л. Особенностью этой стимуляции является двухфазное усиление секреции инсулина:

  • первая фаза длится 5-10 минут и концентрация гормона может 10-кратно возрастать, после чего его количество понижается,
  • вторая фаза начинается примерно через 15 минут от начала гипергликемии и продолжается на протяжении всего ее периода, приводя к увеличению уровня гормона в 15-25 раз.

Чем дольше в крови сохраняется высокая концентрация глюкозы, тем большее число β-клеток подключается к секреции инсулина.

Индукция синтеза инсулина происходит от момента проникновения глюкозы в клетку до трансляции инсулиновой мРНК. Она регулируется повышением транскрипции гена инсулина, повышением стабильности инсулиновой мРНК и увеличением трансляции инсулиновой мРНК.

Активация секреции инсулина

1. После проникновения глюкозы в β-клетки (через ГлюТ-1 и ГлюТ-2) она фосфорилируется гексокиназой IV (глюкокиназа, обладает низким сродством к глюкозе),2. Далее глюкоза аэробно окисляется, при этом скорость окисления глюкозы линейно зависит от ее количества,3. В результате нарабатывается АТФ, количество которого также прямо зависит от концентрации глюкозы в крови,

4. Накопление АТФ стимулирует закрытие ионных K+-каналов, что приводит к деполяризации мембраны,

5. Деполяризация мембраны приводит к открытию потенциал-зависимых Ca2+-каналов и притоку ионов Ca2+ в клетку,
6. Поступающие ионы Ca2+ активируют фосфолипазу C и запускают кальций-фосфолипидный механизм проведения сигнала с образованием ДАГ и инозитол-трифосфата (ИФ3),
7. Появление ИФ3 в цитозоле открывает Ca2+-каналы в эндоплазматической сети, что ускоряет накопление ионов Ca2+ в цитозоле,
8. Резкое увеличение концентрации в клетке ионов Ca2+ приводит к перемещению секреторных гранул к плазматической мембране, их слиянию с ней и экзоцитозу кристаллов зрелого инсулина наружу,
9. Далее происходит распад кристаллов, отделение ионов Zn2+ и выход молекул активного инсулина в кровоток.

 Схема внутриклеточной регуляции секреции инсулина при участии глюкозы

Описанный ведущий механизм может корректироваться в ту или иную сторону под действием ряда других факторов, таких как аминокислоты, жирные кислоты, гормоны ЖКТ и другие гормоны, нервная регуляция.

Из аминокислот на секрецию гормона наиболее значительно влияют лизин и аргинин. Но сами по себе они почти не стимулируют секрецию, их эффект зависит от наличия гипергликемии, т.е. аминокислоты только потенциируют действие глюкозы.

Свободные жирные кислоты также являются факторами, стимулирующими секрецию инсулина, но тоже только в присутствии глюкозы. 

Логичной является положительная чувствительность секреции инсулина к действию гормонов желудочно-кишечного тракта – инкретинов (энтероглюкагона и глюкозозависимого инсулинотропного полипептида), холецистокинина, секретина, гастрина, желудочного ингибирующего полипептида.

Клинически важным и в какой-то мере опасным является усиление секреции инсулина при длительном воздействии соматотропного гормона, АКТГ и глюкокортикоидов, эстрогенов, прогестинов. При этом возрастает риск истощения β-клеток, уменьшение синтеза инсулина и возникновение инсулинзависимого сахарного диабета. Такое может наблюдаться при использовании указанных гормонов в терапии или при патологиях, связанных с их гиперфункцией.

Нервная регуляция β-клеток поджелудочной железы включает адренергическую и холинергическую регуляцию.

Любые стрессы (эмоциональные и/или физические нагрузки, гипоксия, переохлаждение, травмы, ожоги) повышают активность симпатической нервной системы и подавляют секрецию инсулина за счет активации α2-адренорецепторов.

С другой стороны, стимуляция β2-адренорецепторов приводит к усилению секреции.

Также выделение инсулина повышается n.vagus, в свою очередь находящегося под контролем гипоталамуса, чувствительного к концентрации глюкозы крови.

К лекарственным регуляторам секреции инсулина относятся производные сульфанилмочевины (глибенкламид, гликлазид) и глиниды (старликс, новонорм). Обе группы связываются с разными участками одного рецептора и блокируют АТФ-зависимые калиевые каналы, открывая Ca2+-каналы, и этим индуцируя секрецию инсулина.

Мишени

Рецепторы инсулина находятся практически на всех клетках организма, кроме нервных, но в разном количестве. Нервные клетки не имеют рецепторов к инсулину, т.к. последний просто не проникает через гематоэнцефалический барьер.

Наибольшая концентрация рецепторов наблюдается на мембране гепатоцитов (100-200 тыс на клетку) и адипоцитов (около 50 тыс на клетку), клетка скелетной мышцы имеет около 10 тысяч рецепторов, а эритроциты – только 40 рецепторов на клетку.

Механизм действия

После связывания инсулина с рецептором активируется ферментативный домен рецептора. Так как он обладает тирозинкиназной активностью, то фосфорилирует внутриклеточные белки – субстраты инсулинового рецептора. Дальнейшее развитие событий обусловлено двумя направлениями: MAP-киназный путь и ФИ-3-киназный механизмы действия (подробно).

При активации фосфатидилинозитол-3-киназного механизма результатом являются быстрые эффекты – активация ГлюТ-4 и поступление глюкозы в клетку, изменение активности “метаболических” ферментов – ТАГ-липазы, гликогенсинтазы, гликогенфосфорилазы, киназы гликогенфосфорилазы, ацетил-SКоА-карбоксилазы и других.

При реализации MAP-киназного механизма (англ. MAP – mitogen-activated protein) регулируются медленные эффекты – пролиферация и дифференцировка клеток, процессы апоптоза и антиапоптоза.

Скорость эффектов действия инсулина

Биологические эффекты инсулина подразделяются по скорости развития:

Очень быстрые эффекты (секунды)

Эти эффекты связаны с изменением трансмембранных транспортов:

1. Активации Na+/K+-АТФазы, что вызывает выход ионов Na+ и вход в клетку ионов K+, что ведет к гиперполяризации мембран чувствительных к инсулину клеток (кроме гепатоцитов).

2. Активация Na+/H+-обменника на цитоплазматической мембране многих клеток и выход из клетки ионов H+ в обмен на ионы Na+. Такое влияние имеет значение в патогенезе артериальной гипертензии при сахарном диабете 2 типа.

3. Угнетение мембранной Ca2+-АТФазы приводит к задержке ионов Ca2+ в цитозоле клетки.

4. Выход на мембрану миоцитов и адипоцитов переносчиков глюкозы ГлюТ-4 и увеличение в 20-50 раз объема транспорта глюкозы в клетку.

Быстрые эффекты (минуты)

Быстрые эффекты заключаются в изменении скоростей фосфорилирования и дефосфорилирования метаболических ферментов и регуляторных белков.

Печень

  • торможение эффектов адреналина и глюкагона (фосфодиэстераза),
  • ускорение гликогеногенеза (гликогенсинтаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиление синтеза жирных кислот (ацетил-SКоА-карбоксилаза),
  • формирование ЛПОНП,
  • повышение синтеза холестерина (ГМГ-SКоА-редуктаза),

Мышцы

  • торможение эффектов адреналина (фосфодиэстераза),
  • стимулирует транспорт глюкозы в клетки (активация ГлюТ-4),
  • стимуляция гликогеногенеза (гликогенсинтаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиливает транспорт нейтральных аминокислот в мышцы,
  • стимулирует трансляцию (рибосомальный синтез белков).

Жировая ткань

  • стимулирует транспорт глюкозы в клетки (активация Глют-4),
  • активирует запасание жирных кислот в тканях (липопротеинлипаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • усиление синтеза жирных кислот (активация ацетил-SКоА-карбоксилазы),
  • создание возможности для запасания ТАГ (инактивация гормон-чувствительной-липазы).

Медленные эффекты (минуты-часы)

Медленные эффекты заключаются в изменении скорости транскрипции генов белков, отвечающих за обмен веществ, за рост и деление клеток, например:

1. Индукция синтеза ферментов в печени

  • глюкокиназы и пируваткиназы (гликолиз),
  • АТФ-цитрат-лиазы, ацетил-SКоА-карбоксилазы, синтазы жирных кислот, цитозольной малатдегидрогеназы (синтез жирных кислот),
  • глюкозо-6-фосфатдегидрогеназы (пентозофосфатный путь),

2. Индукция в адипоцитах синтеза глицеральдегидфосфат-дегидрогеназы и синтазы жирных кислот.

3. Репрессия синтеза мРНК, например, для ФЕП-карбоксикиназы (глюконеогенез).

4. Обеспечивает процессы трансляции, повышая фосфорилирование по серину рибосомального белка S6.

Очень медленные эффекты (часы-сутки)

Очень медленные эффекты реализуют митогенез и размножение клеток. Например, к этим эффектам относится

1. Повышение в печени синтеза соматомедина, зависимого от гормона роста.

2. Увеличение роста и пролиферации клеток в синергизме с соматомединами.

3. Переход клетки из G1-фазы в S-фазу клеточного цикла.

Инактивация инсулина

Удаление инсулина из циркуляции происходит после его связывания с рецептором и последующей интернализации (эндоцитоза) гормон-рецепторного комплекса, в основном в печени и мышцах.

После поглощения комплекс разрушается и белковые молекулы лизируются до свободных аминокислот. В печени захватывается и разрушается до 50% инсулина при первом прохождении крови, оттекающей от поджелудочной железы.

В почках инсулин фильтруется в первичную мочу и, после реабсорбции в проксимальных канальцах, разрушается.

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.

Найти

Появился вопрос? Спрашиваем в группе

Общая биохимия

Источник: https://biokhimija.ru/gormony/insulin.html

Влияние инсулина на обмен веществ

Влияние инсулина на обмен веществ

Инсулин оказывает влияние на все виды обмена веществ, способствует анаболическим процессам, увеличивает синтез гликогена, жиров и белков, тормозя эффекты многочисленных контринсулярных гормонов (глюкагона, катехоламинов, глюкокортикоидов и соматотропина).

Все эффекты инсулина подразделяются на 4 группы:

1. очень быстрые (через несколько секунд) – гиперполяризация мембран клеток (за исключением гепатоцитов), повышение проницаемости для глюкозы, активация Na+К+-АТФазы, входа К+ и откачивания Na+, подавление Са2+- насоса и задержка Са2+;

2. быстрые эффекты (в течение нескольких минут) – активация и торможение различных ферментов, подавляющих катаболизм и усиливающих анаболические процессы;

3. медленные процессы (в течение нескольких часов) – повышение поглощения аминокислот, изменение синтеза РНК и белков-ферментов;

4. очень медленные эффекты (то часов до суток) – активация митогенеза и размножения клеток.

Инсулин оказывает влияние практически на все органы и ткани, однако его главными мишенями служат печень, мышечная и жировая ткань.

Важнейшим эффектом инсулина в организме является увеличение в транспорта глюкозы через мембраны мышечных и жировых клеток путем облегченной диффузии по градиенту концентрации с помощью чувствительных к гормону мембранных белковых переносчиков, называемых ГЛЮТ. В мембранах разных видов клеток выявлены 6 типов ГЛЮТ, но только ГЛЮТ-4 – является инсулинзависимым и находится на мембранах клеток скелетных мышц, миокарда, жировой ткани.

Инсулин влияет на все виды обмена веществ и оказывает следующие эффекты:

На углеводный обмен:

– усиливает транспорт глюкозы через клеточную мембрану и ее утилизацию тканями, снижает уровень глюкозы крови

– подавляет распад и стимулирует синтез гликогена

– угнетает глюконеогенез

– активирует процессы гликолиза

На жировой обмен:

– угнетает липолиз, что приводит к снижению поступления свободных жирных кислот в кровоток

– препятствует образованию кетоновых тел в организме

– стимулирует синтез триглицеридов и жирных кислот из глюкозы

На белковый обмен:

– повышает проницаемость мембран для аминокислот

– усиливает синтез иРНК

– стимулирует синтез и подавляет распад белка

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ ИНСУЛИНОТЕРАПИИ

1. Сахарный диабет I типа.

2. Резистентность к синтетическим пероральным сахароснижающим средствам при сахарном диабете II типа.

3. Декомпенсация сахарного диабета, вызванная различными факторами (острые сопутствующие заболевания, травмы, инфекции).

4. Гипергликемические комы.

5. Тяжелые поражения печени и почек при сахарном диабете II типа, когда невозможно применить синтетические пероральные сахароснижающие средства.

6. Плохое заживление ран.

7. Выраженное истощение.

ПОБОЧНЫЕ ЭФФЕКТЫ ИНСУЛИНА.

1. Гипогликемические реакции.

2. Липодистрофии в месте введения.

3. Инсулинорезистентность.

4. Местные и системные аллергические реакции.

ПРОТИВОПОКАЗАНИЯ.

1. Заболевания, протекающие с гипогликемией.

2. Амилоидоз почек.

3. Язва желудка и двенадцатиперстной кишки.

4. Декомпенсированные пороки сердца.

ПРОИЗВОДНЫЕ СУЛЬФОНИЛМОЧЕВИНЫ

I поколение II поколение

Бутамид Глибенкламид (Манинил, Даонил)

Толбутамид Глипизид (Антидиаб, Глибенез)

Хлорпропамид Гликлазид (Диабетон)

Гликвидон (Глюренорм)

Глимепирид (Амарил)

МЕГЛИТИНИДЫ

Репаглинид –произв. бензойной кислоты

Натеглинид –произв. D-фенилаланина

МЕХАНИЗМ ДЕЙСТВИЯ

– стимулируют β-клетки поджелудочной железы и повышают выработку эндогенного инсулина.

– снижают активность инсулиназы.

– тормозят связывание инсулина с антителами и белками плазмы крови.

– снижают активность фосфорилазы и тормозят гликогенолиз.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Сахарный диабет II типа (при невозможности компенсации гипергликемии диетой).

ПОБОЧНЫЕ ЭФФЕКТЫ

1. Гипогликемические реакции.

2. Увеличение массы тела.

3. Повышение чувствительности к алкоголю.

4. Гипонатриемия.

5. Тошнота, рвота.

6. При длительном применении – нарушение функции печени и почек.

7. Нарушение кроветворения: агранулоцитоз, тромбопения, гемолитическая анемия.

8. Аллергические реакции.

9. Фотосенсибилизация (фотодерматоз).

ПРОТИВОПОКАЗАНИЯ

1. Сахарный диабет I типа и все диабетические комы.

2. Выраженные нарушения функции печени и/или почек.

3. Беременность, лактация.

4. Повышенная чувствительность к производным сульфонилмочевины.

БИГУАНИДЫ

Буформин (Адебит, Глибутид)

Метформин (Сиофор, Глюкофаг)

МЕХАНИЗМ ДЕЙСТВИЯ

Тормозят инактивацию эндогенного инсулина, снижают всасывание углеводов в кишечнике, повышают потребление глюкозы клетками без образования гликогена и стимулируют анаэробный гликолиз.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Сахарный диабет II типа (особенно в сочетании с ожирением).

ПОБОЧНЫЕ ЭФФЕКТЫ

1. Диарея.

2. Диспепсические явления.

3. Металлический привкус во рту.

4. Анорексия.

5. Мегалобластическая анемия (редко).

6. Лактоацидоз (буформин).

ПРОТИВОПОКАЗАНИЯ

1. Сахарный диабет I типа и все диабетические комы.

2. Нарушения функции почек.

3. Любые состояния, сопровождающиеся гипоксией.

5. Наличие лактоацидоза в анамнезе.

6. Хронический алкоголизм.

7. Операции и травмы.

8. Заболевания печени или повышение активности печеночных ферментов в 2 и более раза по сравнению с нормой.

9. Период повышенных физических нагрузок.

10 Беременность, лактация.

ПРОИЗВОДНЫЕ ТИАЗОЛИДИНДИОНА

Розиглитазон

Пиоглитазон (актос)

МЕХАНИЗМ ДЕЙСТВИЯ

Повышают чувствительность тканей к инсулину. Взаимодействуют со специфическими ядерными рецепторами, что транскрипцию некоторых инсулинчувствительных генов и в итоге снижается резистентность к инсулину. Повышают захват тканями глюкозы, жирных кислот, усиливают липогенез, угнетают глюконеогенез.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Сахарный диабет II типа, на фоне недостаточности продукции эндогенного инсулина, а также при развитии инсулинорезистентности.

ПОБОЧНЫЕ ЭФФЕКТЫ

1. Гипогликемические реакции.

2. Отеки.

3. Анемия.

4. Аллергические реакции.

ПРОТИВОПОКАЗАНИЯ

1. Диабетические комы.

2. Выраженные нарушения функции печени и почек.

3. Беременность, лактация.

ИНГИБИТОРЫ α-ГЛИКОЗИДАЗ

Акарбоза (Глюкобай)

МЕХАНИЗМ ДЕЙСТВИЯ

– угнетают интестинальные α-гликозидазы, что приводит к замедлению усвоения углеводов и снижению поглощения глюкозы из сахаридов

– снижают суточные колебания содержания глюкозы в крови

– усиливают действие диабетической диеты

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Сахарный диабет II типа (при невозможности компенсации гипергликемии диетой).

ПОБОЧНЫЕ ЭФФЕКТЫ

1. Метеоризм.

2. Боли в эпигастральной области.

3. Диарея.

4. Аллергические реакции (редко).

ПРОТИВОПОКАЗАНИЯ

1. Хронические заболевания кишечника, протекающие с выраженными нарушениями пищеварения и абсорбции (неспецифический язвенный колит).

2. Грыжи больших размеров.

3. Сужение и язвы кишечника.

4. Беременность и лактация.

ИНКРЕТИНОМИМЕТИКИ

Инкретины –это гормоны, которые секретируются некоторыми типами клеток тонкого кишечника в ответ на прием пищи и стимулируют секрецию инсулина.

Выделяют 2 гормона.

1.Глюкозозависимый инсулинотропный пептид (ГИП)

2. Глюкогонподобный полипептид (ГПП-1)

При экзогенном введении инкретинов на фоне сахарного диабета 2 типа только ГПП-1 проявлял достаточный инсулинотропный эффект, в связи с чем подходил для создания препаратов на его основе.

Созданные препараты можно разделить на 2 группы:

1. Вещества, имитирующие действие ГПП-1 – аналоги ГПП-1

2. Вещества, пролонгирующие действие эндогенного ГПП-1 вследствие блокады дипептидилпептидазы-4 (ДПП-4) – вермента, разрушающего ГПП-1– Ингибиторы ДПП-4

ИНКРЕТИНОМИМЕТИКИ

1.Аналоги глюкогонподобного полипептида-1 (ГПП-1)

Эксенатид (Баета)

Лираглутид (Виктоза)

МЕХАНИЗМ ДЕЙСТВИЯ

Стимулирует рецепторы к глюкагонподобному полипептиду-1 и вызывает следующие эффекты:

1.Улучшают функцию β-клеток поджелудочной железы, усиливают глюкозозависимую секрецию инсулина. Секреция инсулина прекращается по мере того, как снижается концентрация глюкозы в крови (т.е. снижается риск развития гипогликемии).

2. Восстанавливают или значительно усиливают как 1-ю так и 2-ю фазу инсулинового ответа.

3. Подавляют избыточную секрецию глюкагона, но не нарушают нормального глюкагонового ответа на гипогликемию.

4. Уменьшают чувство голода

2. Ингибиторы дипептидилпептидазы -4 (ДПП-4)

Ситаглиптин (Янувия)

Вилдаглиптин (Галвус)

Саксаглиптин

МЕХАНИЗМ ДЕЙСТВИЯ

Подавляя действие фермента ДПП-4, увеличивают уровень и продолжительность жизни эндогенных глюкозозависимого инсулинотропного пептида (ГИП) и ГПП-1, способствуя усилению их физиологического инсулинотропного действия.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Сахарный диабет II типа

– монотерапия: в качестве дополнения к диете и физическим нагрузкам;

– комбинированная терапия в сочетании с другими сахароснижающими средствами.

ПОБОЧНЫЕ ЭФФЕКТЫ

1. Тошнота, рвота, диарея

2. Снижение аппетита

3. Боли в эпигастральной области

4. Беспокойство

5. Головокружение

6. Головная боль

7. Сонливость

ПРОТИВОПОКАЗАНИЯ

1. Сахарный диабет I типа и диабетические комы

2. Беременность, лактация

3.Нарушение функции печени

4. Сердечная недостаточность.

5. Воспалительные заболевания кишечника

6. Детский и подростковый возраст до 18 лет.

7. Повышенная чувствительность к препаратам.

ЭСТРОГЕННЫЕ ПРЕПАРАТЫ

1. Эстрогенные препараты стероидного строения:

ЭСТРОН (фолликулин)

ЭСТРАДИОЛ (дерместрил, климара, прогинова)

ЭТИНИЛЭСТРАДИОЛ (микрофоллин)

ЭСТРИОЛ (овестин)

2. Эстрогенные препараты нестероидного строения:

СИНЕСТРОЛ (гексэстрол)

ДИЭТИЛСТИЛЬБЭСТРОЛ

ДИМЭСТРОЛ

СИГЕТИН

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Патологические состояния, связанные с недостаточной функцией яичников:

1. Первичная и вторичная аменорея.

2. Гипоплазия половых органов и вторичных половых признаков.

3. Климактерические и посткастрационные расстройства.

4. Бесплодие.

5. Слабость родовой деятельности.

6. Профилактика и лечение остеопороза у женщин в период менопаузы.

7. Гипертрофия и рак предстательной железы у мужчин (синтетические препараты нестероидной структуры).

8. Пероральная и имплантируемая контрацепция.

АНТИЭСТРОГЕННЫЕ ПРЕПАРАТЫ

КЛОМИФЕН (клостильбегит,кломид)

ТАМОКСИФЕН

ТОРЕМИФЕН (фарестон)

МЕХАНИЗМ ДЕЙСТВИЯ

1. Блокируют эстрогеновые рецепторы и устраняют действие эстрогенов.

2. Блокируя эстрогеновые рецепторы в гипоталамусе и гипофизе, нарушают систему обратной связи, что приводит к усилению выработки гонадотропных гормонов и, как следствие, увеличению размеров яичников и повышению их функции.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

1. Ановуляторная дисфункция яичников и связанное с ней бесплодие.

2. Дисфункциональное маточное кровотечение.

3. Дисгонадотропные формы аменореи.

4. Андрогенная недостаточность.

5. Олигоспермия.

6. Задержка полового и физического развития у подростков мужского пола.



Источник: https://infopedia.su/5xd14.html

Инсулин — это гормон

Влияние инсулина на обмен веществ

Инсулин — это гормон поджелудочной железы, который главным образом воздействует на обмен веществ, причем в основном — на концентрацию глюкозы в крови. В своих тканях-мишенях он влияет как на мембранные, так и на внутриклеточные процессы. Некоторые из его эффектов перечислены в ниже.

Мембранные эффекты

  1. Стимуляция транспорта глюкозы (и некоторых других моносахаридов)
  2. Стимуляция транспорта аминокислот (особенно аргинина)
  3. Стимуляция транспорта жирных кислот
  4. Стимуляция поглощения клеткой К+ и Mg2+

Внутриклеточные эффекты

  1. Стимуляции синтеза РНК и ДНК
  2. Стимуляция синтеза белка
  3. Усиленная стимуляция гликогенсинтазы (гликогенез)
  4. Стимуляция глюкокиназы
  5. Ингибирование глюкозо-6-фосфатазы
  6. Стимуляция липогенеза
  7. Ингибирование липолиза (ингибирование синтеза цАМФ)
  8. Стимуляция синтеза жирных кислот
  9. Активация Mg2+-стимулируемой Na+/K+-АТФазы

Инсулин и глюкоза

Попав в клетку, глюкоза быстро превращается в глюкозо-6-фосфат, поэтому ее внутриклеточная концентрация остается крайне низкой. Уровень глюкозы в артериальной крови в норме поддерживается в пределах 4-8 ммоль/л (72-144 мг/100 мл), так что по обе стороны клеточной мембраны всегда существует градиент ее концентраций.

Несмотря на это, однако, простая диффузия обеспечивает поступление в большинство клеток лишь небольшого количества глюкозы, которого явно недостаточно для удовлетворения их метаболических потребностей (даже при возрастании концентрационного градиента, как это имеет место при высокой гипергликемии). В присутствии же инсулина проникновение декстрозы в клетки резко усиливается.

Это действие инсулина проявляется лишь при наличии концентрационного градиента глюкозы, конкурентно ингибируется другими моносахаридами (например, галактозой) и следует кинетике насыщаемого процесса.

Таким образом, гормон стимулирует процесс облегченной диффузии декстрозы, который осуществляется при участии чувствительных к гормону белковых транспортеров глюкозы (GLUT), расположенных на клеточной мембране.

Эти транспортеры способны переносить глюкозу через клеточную мембрану в обоих направлениях, но ее поток зависит от концентрационного градиента, который направлен из внеклеточного пространства во внутриклеточное. В разных клетках найдены многочисленные GLUT, но инсулинозависимым является только один из этих белков — GLUT4, и именно он присутствует в мембранах клеток скелетных и сердечных мышц, а также жировой ткани.

Димерный рецептор инсулина и последствия инсулиновой активации тирозинкиназы (GLUT — транспортер глюкозы)

Некоторые ткани полностью удовлетворяют свои потребности в глюкозе за счет инсулиннезависимых механизмов.

Например, в клетки печени и центральной нервной системы декстроза попадает с помощью инсулиннезависимых GLUT, и поглощение этими тканями зависит только от ее уровня в крови.

Кроме того, мембрану эритроцитов, клеток почек и кишечника глюкоза пересекает вместе с ионами натрия, которые поступают в клетки путем пассивной диффузии по градиенту концентрации.

Регуляция продукции инсулина

Инсулин влияет и на внутриклеточные процессы обмена веществ. В печеночных и других клетках он стимулирует синтез гликогена, повышая активность гликогенсинтазы, что ускоряет включение гликозильных остатков в гликоген.

Гормон поджелудочной железы повышает также активность печеночной глюкокиназы; этот фермент катализирует фосфорилирование глюкозы (с образованием глюкозо-6-фосфата). Одновременно гормон ингибирует печеночную фосфатазу, которая дефосфорилирует глюкозо-6-фосфат, с образованием свободной глюкозы.

Такие изменения активности печеночных ферментов обусловливают снижение продукции декстрозы и наряду со стимуляцией поглощения ее периферическими клетками определяют гипогликемию, возникающее под влиянием инсулина.

Возрастающая под действием последнего утилизация глюкозы в тканях обеспечивает сохранение запасов других внутриклеточных энергетических субстратов, таких как жиры и белки.

Белки и инсулин

Инсулин стимулирует не только активный транспорт аминокислот в периферические клетки, но и непосредственно синтез белка.

Поскольку эти два эффекта могут не зависеть друг от друга, гормон влияет, очевидно, не только на клеточную мембрану, но и на внутриклеточные процессы. Стимуляции синтеза белка предшествует возрастание активности мРНК.

Поскольку гормон с трудом проходит сквозь мембраны клеток, в механизме его ядерного эффекта должен принимать участие второй посредник. Синтез белка под действием инсулина усиливается и вследствие возрастания количества поступающих в клетку аминокислот.

С другой стороны, возрастание утилизации глюкозы замедляет распад белка. Ускорение синтеза и замедление распада белка под влиянием гормона приводят к увеличению белковых запасов в интрацеллюлярном секторе.

Все эти эффекты определяют важнейшую роль инсулина в регуляции процессов роста и развития.

Инсулин и жир

Инсулин стимулирует поглощение и окисление глюкозы клетками жировой ткани. Он также стимулирует синтез липопротеиновой липазы в эндотелиальных клетках.

Этот фермент катализирует гидролиз триглицеридов, связанных с липопротеинами крови, и способствует поступлению жирных кислот в адипоциты. Наряду с прямой стимуляцией липогенеза в печени и жировой ткани это приводит к увеличению запасов жира.

Кроме того, инсулин ингибирует опосредуемый цАМФ липолиз, тормозя гормончувствительную внутриклеточную липопротеиновую липазу.

Инсулин и калий

Присутствие инсулина необходимо для поддержания внутриклеточной концентрации ионов калия; этот эффект, по всей вероятности, является следствием прямого влияния гормона на клеточную мембрану.

Лейкок Дж.Ф.

Источник: http://NewVrach.ru/insulin-eto-gormon.html

РецептЛечения
Добавить комментарий